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Double-logarithmic finite-size scaling behavior of the specific heat
does not necessarily imply its divergence
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~Received 23 February 2000; revised manuscript received 12 June 2000!

In a recent paper@Phys. Rev. E60, 3823~1999!# Mazzeo and Ku¨hn presented very careful analyses of the
finite-size scaling~FSS! data obtained from the numerical transfer matrix technique. In this report, as a
complement to that paper, a critical argument based on numerical evidence is given against the conventional
interpretation of the FSS behavior of the specific heat. The argument is likely to cast doubt on previous claims
for numerical evidence for the scenario of a logarithmic correction.

PACS number~s!: 75.10.Hk, 75.10.Nr, 05.50.1q
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The critical behavior of the two-dimensional~2D! disor-
dered Ising ferromagnet has been a controversial issue
theoretically and numerically. There are currently two ma
scenarios, namely, the scenario of weak universality ve
that of the logarithmic correction. In spite of the existence
extensive numerical efforts, it was correctly pointed out
Mazzeo and Ku¨hn @1# ~MK ! that most previous finite-size
scaling~FSS! analyses can be interpreted ambivalently.

From various Monte Carlo studies on the disordered Is
ferromagnet@2,3#, it is now well known that the specific hea
at the critical pointincreasesmildly as a function of the
linear size of the lattice. This mild dependence can be
pressed as a double-logarithmic function, that is,

CL;C081C18 ln~11C28ln L !, ~1!

whereC18 andC28 should be positive for increasingCL . Most
authors have interpreted Eq.~1! as evidence for the critica
behavior of the double-logarithmic divergence@2,4,5#. MK
argued and showed that their transfer matrix data fitted to
~1! can as well be fitted to

CL;C`1C38L
a/n, ~2!

with negative values ofa/n and C38 and with a positive
nonzero value ofC` . Equation~2! is an indication of the
validity of the scenario of weak universality.

In this report, instead of showing the ambivalence of
fits, we take a different approach to demonstrate that Eq.~1!
is unlikely to imply the scaling behavior of the logarithm
divergence. To this end we start with a model where
value of a is explicitly known to be negative. One suc
model mostly studied by field theory@7#, series expansion
methods@8#, and Monte Carlo methods@9# is the simple
cubic N-vector model with N53 ~the nearest neighbo
Heisenberg model!. For this model the values ofa and the
critical temperature area.20.11(3) andTc.1.4430, re-
spectively@7–9#.

At Tc , we measured the specific heat (CL) of the Heisen-
berg model by a Monte Carlo method based on Wolf
single cluster algorithm. The measurements are over
range ofL up to L5120 ~1 728 000 lattice sites! with the
periodic boundary condition imposed on the simple cu
lattice.
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We plot our data for the specific heat against ln(lnL) ~Fig.
1!. The figure clearly shows that the data scale nicely w
ln(ln L) up to L560 but start to scale muchfaster than that
with increasing values ofL. Consequently, the data do not fi
Eq. ~1! but fit Eq. ~2! with the value ofa/n.0.237. This
estimate is unacceptable in light of the conventionally
cepted estimate, that is,a/n.20.15.

A feature emerging from this analysis is that for the sp
cific heat the true asymptotic FSS behavior may manif
itself for values ofL much larger than for other typical vari
ables like the correlation length and the magnetic susce
bility, and thus the preasymptotic FSS behavior of the s
cific heat may yield a grossly misleading estimate. We a
deduce from the figure another feature: the FSS behavio
the specific heat is nonuniform as a function ofL since it
must converge in the thermodynamic limit. We stress t
these features hold generally regardless of the value oa:
For the 2D three-state Potts model where the exact valu
a is positive, the FSS behavior of the specific heat is n
uniform and its FSS analysis does not yield an accurate
timate ofa/n while that of other variables does@10#.

This result is remarkable because for the disordered Is

FIG. 1. CL(Tc) versus ln(lnL) for the simple cubic Heisenberg
ferromagnet. HereTc51.4430 and the range ofL used is 8<L
<120.
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ferromagnet the specific heat data appeared to be consi
with the ln(lnL) behavior@2–5#. Even though one assume
that the data sets are in the asymptotic regime, this con
tency cannot be regarded as conclusive due to the aforem
tioned ambivalence of the fits. On the other hand, if the d
sets are not in the asymptotic regime, a FSS analysis of
specific heat can yield a completely meaningless estim
evenin the absenceof any ambiguity in the interpretation. I
is thus very unlikely that the ln(lnL) behavior can be re
garded as conclusive evidence for the scenario of the lo
rithmic correction. It is also clear from the nonuniformi
that the preasymptotic FSS behavior of the specific heat
tween lnL and ln(lnL) found in Ref.@6# should not be inter-
preted as crossover behavior.

At this point one may wonder if our result is an artifact
a tiny error inTc . We actually observed similar behavior fo
all the temperature we tried nearTc . Moreover, there are
other Monte Carlo data reported atTc51.4427 up toL532
@11#, which also show seemingly divergent FSS behavior
the specific heat.

We also remark that similar FSS behavior~faster than the
double-logarithmic FSS! was obtained at the critical point o
the 3DN-vector model forN55 @12#, where the value of the
critical exponent of the correlation length is larger than t
of the Heisenberg model@7#. All those cross-checks certainl
rule out the possibility of an artifact.

The ambivalence in interpretation is not limited to ana
sis of the FSS behavior only; it also appears in analysis
thermodynamic data. In the Monte Carlo method the therm
dynamic data of such physical variables as the magnetic
ceptibility and the correlation length at a given temperat
can be properly obtained under thethermodynamic condition
that the linear size of the latticeL is much larger than the
corresponding correlation lengthjL , e.g.,L/jL*7 for typi-
cal 2D undisorderedsystems@13#. Provided that a set o
thermodynamic data measured at various different temp
tures in the scaling regime is available, the data set that
be fitted to a pure power-law singularity can equally well
fitted to a modified power law with some multiplicative log
rithmic correction. To overcome this ambivalence measu
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ments of the thermodynamic data are needed over too
tremely broad a range for the usual Monte Ca
measurement to even be possible. In Ref.@3#, however, the
thermodynamicdata for the specific heat in the scaling r
gime, not the FSS data at criticality, were observed to
decreasing with decreasing temperature toward the crit
point. The observed finite peak in the thermodynamic s
cific heat at a noncritical temperature can by no means
accounted for in the context of a scenario of a logarithm
correction.

A series expansion study does not suffer from the fin
size effect, so the aforementioned ambiguity problem in
analysis of FSS does not apply to an analysis of the se
expansion. Nevertheless, a series expansion study su
from the same ambivalence problem encountered in
analysis of the thermodynamic data: It was shown in a rec
high-temperature expansion study of the 2D random b
disordered Ising ferromagnet@14# that, for a given strength
of disorder, both a pure power-law singularity and a mo
fied power-law singularity with a logarithmic correction ca
be consistent with the series expansion. An odd claim fr
the series expansion study is that, while the critical expon
g obtained from the assumption of the pure power-law s
gularity increases monotonically with increasing strength
the disorder, the critical exponent of the logarithmic te
from the assumption of the modified power-law singular
does not change accordingly@14#. A more recent paper@15#
suggested that the claim is unlikely to be correct. It was a
clearly demonstrated that, for a sufficiently strong disord
the critical exponent of the logarithmic term isdefinitely
larger than the proposed value in the scenario of a logar
mic correction@15#.

To conclude, we have provided an example where
value of a is negative, yet the FSS behavior looks mo
divergent than double-logarithmic behavior. This serves a
clear counterexample against the conventional interpreta
of the FSS behavior of the specific heat made in some stu
of the critical behavior of the 2D disordered Ising ferroma
net.
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